AZITHROMYCIN MONOHYDRATE- azithromycin monohydrate tablet
Lupin Pharmaceuticals, Inc.

HIGHLIGHTS OF PRESCRIBING INFORMATION
These highlights do not include all the information needed to use AZITHROMYCIN TABLETS safely and effectively. See full prescribing information for AZITHROMYCIN TABLETS.

AZITHROMYCIN tablets, 250 mg and 500 mg, for oral use

RECENT MAJOR CHANGES
2017
Warfarin: Use with azithromycin may increase coagulation times; monitor prothrombin time. (4.1)

INDICATIONS AND USAGE
Azithromycin tablets are a macrolide antibacterial drug indicated for the treatment of infections caused by susceptible bacteria:
- Acute bacterial sinusitis
- Acute bacterial exacerbations of chronic bronchitis
- Pharyngitis/tonsillitis
- Community-acquired pneumonia

CONTRAINDICATIONS
- Patients with known hypersensitivity to azithromycin, erythromycin, any macrolide or ketolide drug. (4.1)
- Use with azithromycin may increase coagulation times; monitor prothrombin time. (4.1)

WARNINGs AND PRECAUTIONS
- Severe, and sometimes fatal, hepatotoxicity has been reported; Discontinue azithromycin immediately if signs and symptoms of hepatitis occur. (5.2)
- Prolongation of QT interval and cases of torsades de pointes have been reported. This risk which can be fatal should be considered in patients with certain cardiovascular disorders including those that prolong the QT interval and with other drugs that prolong the QT interval. (5.4)
- Clostridium difficile-Associated Diarrhea: Evaluate patients if diarrhea occurs. (5.5)
- Azithromycin may exacerbate muscle weakness in persons with myasthenia gravis. (5.6)

ADVERSE REACTIONS
- The most common adverse reactions are diarrhea, nausea, abdominal pain, or vomiting. (6.1)

DRUG INTERACTIONS
- Azithromycin should not be used in patients with pneumonia who are judged to be inappropriate for oral therapy because of moderate to severe illness or risk factors. (7.1)

DOSEAGE AND ADMINISTRATION
- Use azithromycin tablets only to treat infections that are proven or strongly suspected to be caused by susceptible bacteria. (4.1)

Dosage
- Pediatric Patients: (1.2)
- Adult Patients: (1.1)

8 USE IN SPECIFIC POPULATIONS
- See 17 for PATIENT COUNSELING INFORMATION and FDA-approved patient labeling.

Revied: 3/2018

FULL PRESCRIBING INFORMATION: CONTENTS*
1 INDICATIONS AND USE
1.1 Adult Patients
1.2 Pediatric Patients
1.3 Limitations of Use
1.4 Usage
2 DOSAGE AND ADMINISTRATION
2.1 Adult Patients
2.2 Pediatric Patients
3 DOSAGE FORMS AND STRENGTHS
4 CONTRAINdications
4.1 Hypersensitivity
4.2 Hepatic Dysfunction
5 WARNINGS AND PRECAUTIONs
5.1 Hypersensitivity
5.2 Hepatotoxicity
5.3 Infantile Hyperprrhpic Pyloric Stenosis (HIPS)
5.4 QT Prolongation
5.5 Clostridium difficile-Associated Diarrhea
5.6 Exacerbation of Myasthenia Gravis
5.7 Use in Sexually Transmitted Disease
5.8 Development of Drug-Resistant Bacteria
6 ADVERSE REACTIONS
6.1 Clinical Trials Experience
6.2 Postmarketing Experience
6.3 Laboratory Abnormalities
7 DRUG INTERACTIONS
7.1 Nelfinavir
7.2 Warfarin
7.3 Potential Drug-Drug Interaction with Macrolides
8 USE IN SPECIFIC POPULATIONS

See 17 for PATIENT COUNSELING INFORMATION and FDA-approved patient labeling.
AZITHROMYCIN FOR ORAL SUSPENSION CAN BE TAKEN WITH OR WITHOUT FOOD.

2.2 Pediatric Patients
Azithromycin tablets can be taken with or without food.

[see INDICATIONS AND USAGE (1)]

2 DOSAGE AND ADMINISTRATION

1.1 Adult Patients
- Acute bacterial exacerbations of chronic bronchitis due to Haemophilus influenzae, Moraxella catarrhalis, or Streptococcus pneumoniae.
- Acute bacterial sinusitis due to Haemophilus influenzae, Moraxella catarrhalis or Streptococcus pneumoniae.
- Community-acquired pneumonia due to Chlamydia pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae, or Streptococcus pneumoniae in patients appropriate for oral therapy.
- Pharyngitis/tonsillitis caused by Streptococcus pyogenes as an alternative to first-line therapy in individuals who cannot use first-line therapy.
- Uncomplicated skin and skin structure infections due to Staphylococcus aureus, Streptococcus pyogenes, or Streptococcus agalactiae.
- Urethritis and cervicitis due to Chlamydia trachomatis or Neisseria gonorrhoeae.
- Genital ulcer disease in men due to Haemophilus ducreyi (chancroid). Due to the small number of women included in clinical trials, the efficacy of azithromycin in the treatment of chancroid in women has not been established.

1.2 Pediatric Patients
[see USE IN SPECIFIC POPULATIONS (8.4) and CLINICAL STUDIES (14.2)]
- Acute otitis media (<6 months of age) caused by Haemophilus influenzae, Moraxella catarrhalis, or Streptococcus pneumoniae.
- Community-acquired pneumonia (<6 months of age) due to Chlamydia pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae, or Streptococcus pneumoniae in patients appropriate for oral therapy.
- Pharyngitis/tonsillitis (≤2 years of age) caused by Streptococcus pyogenes as an alternative to first-line therapy in individuals who cannot use first-line therapy.

1.3 Limitations of Use
Azithromycin should not be used in patients with pneumonia who are judged to be inappropriate for oral therapy because of moderate to severe illness or risk factors such as any of the following:

- Patients with cystic fibrosis,
- Patients with underlying health problems that may compromise their ability to respond to their illness (including immunodeficiency or functional asplenia),
- Elderly or debilitated patients,
- Patients with significant underlying health problems that may compromise their ability to respond to their illness (including immunodeficiency or functional asplenia).

1.4 Usage
To reduce the development of drug-resistant bacteria and maintain the effectiveness of azithromycin and other antibacterial drugs, azithromycin should be used only to treat infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

2 DOSAGE AND ADMINISTRATION

2.1 Adult Patients
[see INDICATIONS AND USAGE (1.1) and CLINICAL PHARMACOLOGY (12.3)]

<table>
<thead>
<tr>
<th>Infection*</th>
<th>Recommended Dose/Duration of Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community-acquired pneumonia Pharyngitis/tonsillitis (second-line therapy) Skin/Skin structure (uncomplicated)</td>
<td>500 mg as a single dose on Day 1, followed by 250 mg once daily on Days 2 through 5</td>
</tr>
<tr>
<td>Acute bacterial exacerbations of chronic obstructive pulmonary disease</td>
<td>500 mg once daily for 3 days</td>
</tr>
<tr>
<td>Acute bacterial sinusitis</td>
<td>500 mg once daily for 3 days</td>
</tr>
<tr>
<td>Genital ulcer disease (chancroid)</td>
<td>One single 1 gram dose</td>
</tr>
<tr>
<td>Non-gonococcal urethritis and cervicitis</td>
<td>One single 1 gram dose</td>
</tr>
<tr>
<td>Gonococcal urethritis and cervicitis</td>
<td>One single 2 gram dose</td>
</tr>
</tbody>
</table>

* DUE TO THE INDICATED ORGANISMS [see INDICATIONS AND USAGE (1.1)]

Azithromycin tablets can be taken with or without food.

2.2 Pediatric Patients

<table>
<thead>
<tr>
<th>Infection*</th>
<th>Recommended Dose/Duration of Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute otitis media (<6 months of age)</td>
<td>30 mg/kg once daily for 3 days</td>
</tr>
<tr>
<td>Acute otitis media (≥6 months of age)</td>
<td>10 mg/kg as a single dose on Day 1, followed by 5 mg/kg daily on Days 2 through 5</td>
</tr>
<tr>
<td>Acute bacterial sinusitis (<6 months of age)</td>
<td>10 mg/kg once daily for 3 days</td>
</tr>
<tr>
<td>Community-acquired pneumonia Pharyngitis/tonsillitis (≤2 years of age)</td>
<td>10 mg/kg as a single dose on Day 1, followed by 5 mg/kg once daily on Days 2 through 5</td>
</tr>
<tr>
<td>Pharyngitis/tonsillitis (≤2 years of age)</td>
<td>12 mg/kg once daily for 5 days</td>
</tr>
</tbody>
</table>

* DUE TO THE INDICATED ORGANISMS [see INDICATIONS AND USAGE (1.2)]

1 see dosing table below for maximum doses evaluated by indication

Azithromycin for oral suspension can be taken with or without food.

PEDIATRIC DOSAGE GUIDELINES FOR OTITIS MEDIA, ACUTE BACTERIAL SINUSITIS, AND COMMUNITY-ACQUIRED PNEUMONIA (Age 6 months and above) [see USE IN SPECIFIC POPULATIONS (8.4)]

Based on Body Weight
If an allergic reaction occurs, the drug should be discontinued and appropriate therapy should be started.

Fatalities have been reported. Cases of Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) have also been reported. Despite initially successful symptomatic treatment of the allergic symptoms, when symptomatic therapy was discontinued, the allergic symptoms recurred soon thereafter in some patients without further azithromycin exposure. These patients required prolonged periods of observation and symptomatic treatment. The relationship of these episodes to the long tissue half-life of azithromycin and subsequent prolonged exposure to antigens is presently unknown.

Hypersensitivity

Azithromycin is contraindicated in patients with known hypersensitivity to azithromycin, erythromycin, any macrolide or lortadine drug.

Pharyngitis/Tonsillitis

The recommended dose of azithromycin for children with pharyngitis/tonsillitis is 12 mg/kg once daily for 5 days.

Constituting instructions for azithromycin oral suspension: 300, 600, 900, 1200 mg bottles. The table below indicates the volume of water to be used for constitution:

- **Amount to be added:**
 - 300 mg: 3 mL
 - 600 mg: 6 mL
 - 900 mg: 9 mL
 - 1200 mg: 12 mL

Shake well before each use. Oversized bottle provides shake space. Keep tightly closed.

After mixing, store suspension at 5° to 30°C (41° to 86°F) and use within 10 days. Discard after full dosing is completed.

Dosage Forms and Strengths

Azithromycin Tablets, 250 mg are supplied as pink, oval shaped film-coated tablets, engraved with "LU" on one side and "L12" on the other side containing azithromycin monohydrate USP equivalent to 250 mg of azithromycin USP.

Azithromycin Tablets, 500 mg are supplied as pink, oval shaped film-coated tablets, engraved with "LU" on one side and "L11" on the other side containing azithromycin monohydrate USP equivalent to 500 mg of azithromycin USP.

Contraindications

4.1 Hypersensitivity

Azithromycin is contraindicated in patients with known hypersensitivity to azithromycin, erythromycin, any macrolide or lortadine drug.

4.2 Hepatic Dysfunction

Azithromycin is contraindicated in patients with a history of cholestatic jaundice/hepatic dysfunction associated with prior use of azithromycin.

Warnings and Precautions

5.1 Hypersensitivity

Serious allergic reactions, including angioedema, anaphylaxis, and dermatologic reactions including Acute Generalized Exanthematous Pustulosis (AGEP) Steven-Johnson syndrome, and toxic epidermal necrolysis have been reported in patients on azithromycin therapy. [see CONTRAINDICATIONS (4.1)]

Fatalities have been reported. Cases of Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) have also been reported. Despite initially successful symptomatic treatment of the allergic symptoms, when symptomatic therapy was discontinued, the allergic symptoms recurred soon thereafter in some patients without further azithromycin exposure. These patients required prolonged periods of observation and symptomatic treatment. The relationship of these episodes to the long tissue half-life of azithromycin and subsequent prolonged exposure to antigens is presently unknown.

If an allergic reaction occurs, the drug should be discontinued and appropriate therapy should be started.

Dosing Calculated on 10 mg/kg/day

<table>
<thead>
<tr>
<th>Weight</th>
<th>100 mg/5 mL</th>
<th>200 mg/5 mL</th>
<th>Total mL per Treatment Course</th>
<th>Total mg per Treatment Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5 ml</td>
<td>10 ml</td>
<td>15 ml</td>
<td>150 mg</td>
</tr>
<tr>
<td>10</td>
<td>5 ml</td>
<td>10 ml</td>
<td>15 ml</td>
<td>300 mg</td>
</tr>
<tr>
<td>20</td>
<td>10 ml</td>
<td>20 ml</td>
<td>30 ml</td>
<td>600 mg</td>
</tr>
<tr>
<td>30</td>
<td>15 ml</td>
<td>30 ml</td>
<td>45 ml</td>
<td>900 mg</td>
</tr>
</tbody>
</table>

Dosing Calculated on 10 mg/kg/day

<table>
<thead>
<tr>
<th>Weight</th>
<th>100 mg/5 mL</th>
<th>200 mg/5 mL</th>
<th>Total mL per Treatment Course</th>
<th>Total mg per Treatment Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5 ml</td>
<td>10 ml</td>
<td>15 ml</td>
<td>150 mg</td>
</tr>
<tr>
<td>10</td>
<td>5 ml</td>
<td>10 ml</td>
<td>15 ml</td>
<td>300 mg</td>
</tr>
<tr>
<td>20</td>
<td>10 ml</td>
<td>20 ml</td>
<td>30 ml</td>
<td>600 mg</td>
</tr>
<tr>
<td>30</td>
<td>15 ml</td>
<td>30 ml</td>
<td>45 ml</td>
<td>900 mg</td>
</tr>
</tbody>
</table>

Dosing Calculated on 30 mg/kg as a single dose.

<table>
<thead>
<tr>
<th>Weight</th>
<th>100 mg/5 mL</th>
<th>200 mg/5 mL</th>
<th>Total mL per Treatment Course</th>
<th>Total mg per Treatment Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3.75 ml</td>
<td>7.5 ml</td>
<td>11.25 ml</td>
<td>150 mg</td>
</tr>
<tr>
<td>10</td>
<td>7.5 ml</td>
<td>15 ml</td>
<td>22.5 ml</td>
<td>300 mg</td>
</tr>
<tr>
<td>20</td>
<td>15 ml</td>
<td>30 ml</td>
<td>45 ml</td>
<td>600 mg</td>
</tr>
<tr>
<td>30</td>
<td>22.5 ml</td>
<td>45 ml</td>
<td>67.5 ml</td>
<td>900 mg</td>
</tr>
<tr>
<td>50 and above</td>
<td>37.5 ml</td>
<td>75 ml</td>
<td>112.5 ml</td>
<td>1500 mg</td>
</tr>
</tbody>
</table>

Dosing Calculated on 30 mg/kg as a single dose.

<table>
<thead>
<tr>
<th>Weight</th>
<th>100 mg/5 mL</th>
<th>200 mg/5 mL</th>
<th>Total mL per Treatment Course</th>
<th>Total mg per Treatment Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2.5 ml</td>
<td>5 ml</td>
<td>7.5 ml</td>
<td>100 mg</td>
</tr>
<tr>
<td>10</td>
<td>2.5 ml</td>
<td>5 ml</td>
<td>7.5 ml</td>
<td>150 mg</td>
</tr>
<tr>
<td>14</td>
<td>3.5 ml</td>
<td>7.5 ml</td>
<td>11 ml</td>
<td>150 mg</td>
</tr>
<tr>
<td>17</td>
<td>5 ml</td>
<td>10 ml</td>
<td>15 ml</td>
<td>200 mg</td>
</tr>
<tr>
<td>25</td>
<td>7.5 ml</td>
<td>15 ml</td>
<td>22.5 ml</td>
<td>300 mg</td>
</tr>
<tr>
<td>33</td>
<td>10 ml</td>
<td>20 ml</td>
<td>30 ml</td>
<td>400 mg</td>
</tr>
<tr>
<td>40</td>
<td>12.5 ml</td>
<td>25 ml</td>
<td>37.5 ml</td>
<td>500 mg</td>
</tr>
</tbody>
</table>

Dosing Calculated on 12 mg/kg/day for 5 days.

<table>
<thead>
<tr>
<th>Weight</th>
<th>100 mg/5 mL</th>
<th>200 mg/5 mL</th>
<th>Total mL per Treatment Course</th>
<th>Total mg per Treatment Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.5 ml</td>
<td>5 ml</td>
<td>7.5 ml</td>
<td>11.25 ml</td>
</tr>
<tr>
<td>10</td>
<td>5 ml</td>
<td>10 ml</td>
<td>15 ml</td>
<td>22.5 ml</td>
</tr>
<tr>
<td>20</td>
<td>10 ml</td>
<td>20 ml</td>
<td>30 ml</td>
<td>45 ml</td>
</tr>
<tr>
<td>30</td>
<td>15 ml</td>
<td>30 ml</td>
<td>45 ml</td>
<td>75 ml</td>
</tr>
<tr>
<td>50 and above</td>
<td>37.5 ml</td>
<td>75 ml</td>
<td>112.5 ml</td>
<td>1500 mg</td>
</tr>
</tbody>
</table>

Dosing Calculated on 12 mg/kg/day for 5 days.

<table>
<thead>
<tr>
<th>Weight</th>
<th>100 mg/5 mL</th>
<th>200 mg/5 mL</th>
<th>Total mL per Treatment Course</th>
<th>Total mg per Treatment Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.5 ml</td>
<td>5 ml</td>
<td>7.5 ml</td>
<td>11.25 ml</td>
</tr>
<tr>
<td>10</td>
<td>5 ml</td>
<td>10 ml</td>
<td>15 ml</td>
<td>22.5 ml</td>
</tr>
<tr>
<td>20</td>
<td>10 ml</td>
<td>20 ml</td>
<td>30 ml</td>
<td>45 ml</td>
</tr>
<tr>
<td>30</td>
<td>15 ml</td>
<td>30 ml</td>
<td>45 ml</td>
<td>75 ml</td>
</tr>
<tr>
<td>50 and above</td>
<td>37.5 ml</td>
<td>75 ml</td>
<td>112.5 ml</td>
<td>1500 mg</td>
</tr>
</tbody>
</table>

Effectiveness of the 5-day or 1-day regimen in pediatric patients with community-acquired pneumonia has not been established.

Dosing Calculated on 10 mg/kg/day.

<table>
<thead>
<tr>
<th>Weight</th>
<th>100 mg/5 mL</th>
<th>200 mg/5 mL</th>
<th>Total mL per Treatment Course</th>
<th>Total mg per Treatment Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5 ml</td>
<td>10 ml</td>
<td>15 ml</td>
<td>150 mg</td>
</tr>
<tr>
<td>10</td>
<td>5 ml</td>
<td>10 ml</td>
<td>15 ml</td>
<td>300 mg</td>
</tr>
<tr>
<td>20</td>
<td>10 ml</td>
<td>20 ml</td>
<td>30 ml</td>
<td>600 mg</td>
</tr>
<tr>
<td>30</td>
<td>15 ml</td>
<td>30 ml</td>
<td>45 ml</td>
<td>900 mg</td>
</tr>
<tr>
<td>50 and above</td>
<td>22.5 ml</td>
<td>45 ml</td>
<td>67.5 ml</td>
<td>1500 mg</td>
</tr>
</tbody>
</table>

Effectiveness of the 5-day or 1-day regimen in pediatric patients with community-acquired pneumonia has not been established.

Dosing Calculated on 50 mg/kg/day.

<table>
<thead>
<tr>
<th>Weight</th>
<th>100 mg/5 mL</th>
<th>200 mg/5 mL</th>
<th>Total mL per Treatment Course</th>
<th>Total mg per Treatment Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1 ml</td>
<td>2 ml</td>
<td>3 ml</td>
<td>15 mg</td>
</tr>
<tr>
<td>10</td>
<td>2 ml</td>
<td>4 ml</td>
<td>6 ml</td>
<td>30 mg</td>
</tr>
<tr>
<td>20</td>
<td>4 ml</td>
<td>8 ml</td>
<td>12 ml</td>
<td>60 mg</td>
</tr>
<tr>
<td>30</td>
<td>6 ml</td>
<td>12 ml</td>
<td>18 ml</td>
<td>90 mg</td>
</tr>
<tr>
<td>50 and above</td>
<td>10 ml</td>
<td>20 ml</td>
<td>30 ml</td>
<td>150 mg</td>
</tr>
</tbody>
</table>

Effectiveness of the 5-day or 1-day regimen in pediatric patients with community-acquired pneumonia has not been established.

5.2 Hepatotoxicity
Abnormal liver function, hepatitis, cholestatic jaundice, hepatic necrosis, and hepatic failure have been reported, some of which have resulted in death. Discontinue azithromycin immediately if signs and symptoms of hepatitis occur.

5.3 Infants

5.4 QT Prolongation
Prolonged cardiac repolarization and QT interval, imparting a risk of developing cardiac arrhythmia and torsades de pointes, have been seen with treatment with macrolides, including azithromycin. Cases of torsades de pointes have been spontaneously reported during postmarketing surveillance in patients receiving azithromycin. Providers should consider the risk of QT prolongation which can be fatal when weighing the risks and benefits of azithromycin for at-risk groups including:

- patients with known prolongation of the QT interval, a history of torsades de pointes, congenital long QT syndrome, bradyarrhythmias or uncompensated heart failure;
- patients on drugs known to prolong the QT interval;
- patients with ongoing proarrhythmic conditions such as uncorrected hypokalemia or hypomagnesemia, clinically significant bradycardia, and in patients receiving Class IA (quinidine, procainamide) or Class III (defibrillators, amiodarone, sotalol) antiarrhythmic agents.

Elderly patients may be more susceptible to drug-associated effects on the QT interval.

5.5 Clostridium difficile-Associated Diarrhea
Clostridium difficile-associated diarrhea has been reported with use of nearly all antibacterial agents, including azithromycin, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon, leading to overgrowth of C. difficile. C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertension producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.

If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated.

5.6 Exacerbation of Myasthenia Gravis
Exacerbation of symptoms of myasthenia gravis and new onset of myasthenic syndrome have been reported in patients receiving azithromycin therapy.

5.7 Use in Sexually Transmitted Disease
Azithromycin, at the recommended dose, should not be relied upon to treat syphilis. Antibacterial agents used to treat non-gonococcal urethritis may mask or delay the symptoms of incubating syphilis. All patients with sexually transmitted urethritis or cervicitis should have a serologic test for syphilis and appropriate testing for gonorrhea performed at the time of diagnosis. Appropriate antibacterial therapy and follow-up tests for these diseases should be initiated if infections are confirmed.

5.8 Development of Drug-Resistant Bacteria
Prescribing azithromycin in the absence of a proven or strongly suspected bacterial infection is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.

6 ADVERSE REACTIONS

6.1 Clinical Trials Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

In clinical trials, most of the reported side effects were mild to moderate in severity and were reversible upon discontinuation of the drug. Potentially serious adverse reactions of angioedema and cholestatic jaundice were reported. Approximately 0.7% of the patients (adults and pediatric patients) from 5-day multiple-dose clinical trials discontinued azithromycin therapy because of treatment-related adverse reactions. In adults given 500 mg/day for 3 days, the discontinuation rate due to treatment-related adverse reactions was 0.6%. In clinical trials in pediatric patients given 30 mg/kg either as a single dose or over 3 days, discontinuation from the trials due to treatment-related adverse reactions was approximately 1%. Most of the adverse reactions leading to discontinuation were related to the gastrointestinal tract, e.g., nausea, vomiting, diarrhea, or abdominal pain. [See CLINICAL STUDIES (14.2)].

Adults
Multiple-dose regimen: Overall, the most common treatment-related adverse reactions in adult patients receiving multiple-dose regimens of azithromycin were related to the gastrointestinal system with diarrhea/loose stools (4 to 5%), nausea (3%), and abdominal pain (2 to 3%) being the most frequently reported.

Other adverse reactions occurred in patients on the multiple-dose regimen of azithromycin with a frequency greater than 1%. Adverse reactions that occurred with a frequency of 1% or less included the following:

- Cardiovascular: Palpitations, chest pain.
- Gastrointestinal: Diarrhea, flatulence, vomiting, melena, and cholestatic jaundice.
- Genitourinary: Micturition, vaginitis, and nephritis.

- Nervous System: Dizziness, headache, vertigo, and somnolence.

- General: Fatigue.

- Allergic: Rash, pruritus, photosensitivity, and angioedema.

Single 1 gram dose regimen:
Overall, the most common adverse reactions in patients receiving a single-dose regimen of 1 gram of azithromycin were related to the gastrointestinal system and were more frequently reported than in patients receiving the multiple-dose regimen.

Adverse reactions that occurred in patients on the single 1-gram dosing regimen of azithromycin with a frequency of 1% or greater included diarrhea/loose stools (7%), nausea (5%), abdominal pain (5%), vomiting (2%), dyspepsia (1%), and vaginitis (1%).

Single 2 gram dose regimen:
Overall, the most common adverse reactions in patients receiving a single 2-gram dose of azithromycin were related to the gastrointestinal system. Adverse reactions that occurred in patients in this study with a frequency of 1% or greater included nausea (18%), diarrhea/loose stools (14%), vomiting (7%), abdominal pain (7%), vaginitis (2%), dyspepsia (1%), and dizziness (1%). The majority of these complaints were mild in nature.
Pediatric Patients

Single and Multiple-dose regimens: The types of adverse reactions in pediatric patients were comparable to those seen in adults, with different incidence rates for the dosage regimen recommended in pediatric patients.

Acute Otitis Media:

For the recommended total dosage regimen of 30 mg/kg, the most frequent adverse reactions (≥1%) attributed to treatment were diarrhea, abdominal pain, vomiting, nausea, and rash. [see DOSAGE AND ADMINISTRATION (2) and CLINICAL STUDIES (14.2)]

The incidence, based on dosing regimen, is described in the table below:

<table>
<thead>
<tr>
<th>Dosage Regimen</th>
<th>Diarrhea %</th>
<th>Abdominal Pain %</th>
<th>Vomiting %</th>
<th>Nausea %</th>
<th>Rash %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-day</td>
<td>4.3%</td>
<td>1.4%</td>
<td>4.9%</td>
<td>1.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>3-day</td>
<td>2.6%</td>
<td>1.7%</td>
<td>2.3%</td>
<td>0.4%</td>
<td>0.6%</td>
</tr>
<tr>
<td>5-day</td>
<td>1.8%</td>
<td>1.2%</td>
<td>1.1%</td>
<td>0.5%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

Community-Acquired Pneumonia:

For the recommended dosage regimen of 10 mg/kg on Day 1 followed by 5 mg/kg on Days 2 to 5, the most frequent adverse reactions attributed to treatment were diarrhea/loose stools, abdominal pain, vomiting, nausea, and rash.

The incidence is described in the table below:

<table>
<thead>
<tr>
<th>Dosage Regimen</th>
<th>Diarrhea/Loose stools %</th>
<th>Abdominal Pain %</th>
<th>Vomiting %</th>
<th>Nausea %</th>
<th>Rash %</th>
<th>Headache %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-day</td>
<td>5.8%</td>
<td>1.9%</td>
<td>1.9%</td>
<td>1.9%</td>
<td>1.6%</td>
<td>1.0%</td>
</tr>
</tbody>
</table>

Pharyngitis/Tonsillitis:

For the recommended dosage regimen of 12 mg/kg on Days 1 to 5, the most frequent adverse reactions attributed to treatment were diarrhea, vomiting, abdominal pain, nausea, and headache.

The incidence is described in the table below:

<table>
<thead>
<tr>
<th>Dosage Regimen</th>
<th>Diarrhea %</th>
<th>Abdominal Pain %</th>
<th>Vomiting %</th>
<th>Nausea %</th>
<th>Rash %</th>
<th>Headache %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-day</td>
<td>5.4%</td>
<td>3.4%</td>
<td>5.6%</td>
<td>1.8%</td>
<td>0.7%</td>
<td>1.1%</td>
</tr>
</tbody>
</table>

With any of the treatment regimens, no other adverse reactions occurred in pediatric patients treated with azithromycin with a frequency greater than 1%. Adverse reactions that occurred with a frequency of 1% or less included the following:

Cardiovascular:
- Chest pain.

Gastrointestinal:
- Dyspepsia, constipation, anorexia, enteritis, flatulence, gastritis, jaundice, loose stools, and oral moniliasis.

Hematologic and Lymphatic:
- Anemia and leukopenia.

Nervous System:
- Headache (otitis media dosage), hyperkinesia, dizziness, agitation, nervousness, and insomnia.

General:
- Fever, face edema, fatigue, fungal infection, malaise, and pain.

Allergic:
- Rash and allergic reaction.

Respiratory:
- Cough, pharyngitis, pleural effusion, and rhinitis.

Skin and Appendages:
- Eczema, fungal dermatitis, pruritus, sweating, urticaria, and vesiculobullous rash.

Special Senses:
- Conjunctivitis.

6.2 Postmarketing Experience

The following adverse reactions have been identified during post-approval use of azithromycin. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Adverse reactions reported with azithromycin during the postmarketing period in adult and/or pediatric patients for which a causal relationship may not be established include:

Allergic:
- Arthralgia, edema, urticaria, and angioedema.

Cardiovascular:
- Arrhythmias including ventricular tachycardia and hypotension. There have been reports of QT prolongation and torsades de pointes.

Gastrointestinal:
- Anorexia, constipation, dyspepsia, flatulence, vomiting/diarrhea, pseudomembranous colitis, pancreatitis, oral candidiasis, pyloric stenosis, and reports of tongue discoloration.

General:
- Anemia, paradoxaemia, fatigue, malaise, and anaphylaxis.

Genitourinary:
- Interstitial nephritis and acute renal failure and vaginitis.

Hematopoietic:
- Thrombocytopenia.

Liver/Biliary:
- Abnormal liver function, hepatitis, cholestatic jaundice, hepatic necrosis, and hepatic failure. [see WARNINGS AND PRECAUTIONS (5.2)]

Nervous System:
- Convulsions, dizziness/vertigo, headache, somnolence, hyperactivity, nervousness, agitation, and syncope.

Psychiatric:
- Aggressive reaction and anxiety.

Skin/Appendages:
- Pruritus serious skin reactions including erythema multiforme, AGEP, Stevens-Johnson Syndrome, toxic epidermal necrolysis, and DRESS

Special Senses:
- Hearing disturbances including hearing loss, deafness and/or tinnitus, and reports of taste/smell perversion and/or loss.

6.3 Laboratory Abnormalities

Adults

Clinically significant abnormalities (irrespective of drug relationship) occurring during the clinical
trials were reported as follows: with an incidence of greater than 1%: decreased hemoglobin, hematocrit, lymphocytes, neutrophils, and blood glucose; elevated serum creatine phosphokinase, potassium, ALT, AST, BUN, creatinine, blood glucose, platelet count, lymphocytes, neutrophils, and eosinophils; with an incidence of less than 1%: leukopenia, neutropenia, decreased sodium, potassium, platelet count, elevated monocytes, basophils, bicarbonate, serum alkaline phosphatase, bilirubin, LDH, and phosphate. The majority of subjects with elevated serum creatinine also had abnormal values at baseline. When follow-up was provided, changes in laboratory tests appeared to be reversible.

In multiple-dose clinical trials involving more than 5000 patients, four patients discontinued therapy because of treatment-related liver enzyme abnormalities and one because of a renal function abnormality.

Pediatric Patients
One, Three, and Five Day Regimens
Laboratory data collected from comparative clinical trials employing two 3-day regimens (30 mg/kg or 60 mg/kg in divided doses over 3 days), or two 5-day regimens (30 mg/kg or 60 mg/kg in divided doses over 5 days) were similar for regimens of azithromycin and all comparators combined, with most clinically significant laboratory abnormalities occurring at incidences of 1 to 5%. Laboratory data for patients receiving 30 mg/kg as a single dose were collected in a single center trial. In that trial, an absolute neutrophil count between 500 to 1500 cells/mm³ was observed in 10/64 patients receiving 30 mg/kg as a single dose, 9/62 patients receiving 30 mg/kg given over 3 days, and 8/63 comparator patients. No patient had an absolute neutrophil count <500 cells/mm³.

In multiple-dose clinical trials involving approximately 4,700 pediatric patients, no patients discontinued therapy because of treatment-related laboratory abnormalities.

7 DRUG INTERACTIONS
7.1 Nelfinavir
Co-administration of nelfinavir at steady-state with a single oral dose of azithromycin resulted in increased azithromycin serum concentrations. Although a dose adjustment of azithromycin is not recommended when administered in combination with nelfinavir, close monitoring for known adverse reactions of azithromycin, such as liver enzyme abnormalities and hearing impairment, is warranted. [see ADVERSE REACTIONS (6)]

7.2 Warfarin
Spontaneous postmarketing reports suggest that concomitant administration of azithromycin may potentiate the effects of oral anticoagulants such as warfarin, although the prothrombin time was not affected in the dedicated drug interaction study with azithromycin and warfarin. Prothrombin times should be carefully monitored while patients are receiving azithromycin and oral anticoagulants concomitantly.

7.3 Potential Drug-Drug Interactions with Macrolides
Interactions with digoxin or phenytoin have not been reported in clinical trials with azithromycin; however, no specific drug interaction studies have been performed to evaluate potential drug-drug interactions. However, drug interactions have been observed with other macrolide products. Until further data are developed regarding drug interactions when digoxin or phenytoin are used concomitantly with azithromycin careful monitoring of patients is advised.

8 USE IN SPECIFIC POPULATIONS
8.1 Pregnancy
Teratogenic Effects: Pregnancy Category B: Reproduction studies have been performed in rats and mice at doses up to moderately maternally toxic dose concentrations (i.e., 200 mg/kg/day). These daily doses in rats and mice, based on body surface area, are estimated to be 4 and 2 times, respectively, an adult daily dose of 500 mg. In the animal studies, no evidence of harm to the fetus due to azithromycin was found. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, azithromycin should be used during pregnancy only if clearly needed.

8.3 Nursing Mothers
Azithromycin has been reported to be excreted in human breast milk in small amounts. Caution should be exercised when azithromycin is administered to a nursing woman.

8.4 Pediatric Use [see CLINICAL PHARMACOLOGY (12.3), INDICATIONS AND USAGE (1.2), and DOSAGE AND ADMINISTRATION (2.2)]
Safety and effectiveness in the treatment of pediatric patients with acute otitis media, acute bacterial sinusitis, and community-acquired pneumonia under 6 months of age have not been established. Use of azithromycin for the treatment of acute bacterial sinusitis and community-acquired pneumonia in pediatric patients (6 months of age or greater) is supported by adequate and well-controlled trials in adults.

Pharyngitis/Tonsillitis
Safety and effectiveness in the treatment of pediatric patients with pharyngitis/tonsillitis under 2 years of age have not been established.

8.5 Geriatric Use
In multiple-dose clinical trials of oral azithromycin, 9% of patients were at least 65 years of age (458/4949) and 3% of patients (144/4949) were at least 75 years of age. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in response between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. Elderly patients may be more susceptible to development of torsades de pointes arrhythmias than younger patients. [see WARNINGS AND PRECAUTIONS (5.4)]

10 OVERDOSAGE
Adverse reactions experienced at higher than recommended doses were similar to those seen at normal doses particularly nausea, diarrhea, and vomiting. In the event of overdosage, general symptomatic and supportive measures are indicated as required.

11 DESCRIPTION
Azithromycin tablets: USP contain the active ingredient azithromycin, a macrolide antibacterial drug, for oral administration. Azithromycin has the chemical name (2R,3S,4R,5R,8R,10R,11R,12S,13S,14R)-13-[(2,6-dideoxy-3-C-methyl-3-O-methyl-α-L-ribo-hexopyranosyl)oxy]-11-[(3,4,6-trideoxy-3-(dimethylamino)-β-D-xylo-hexopyranosyl)oxy]-2-ethyl-3,4,10-trihydroxy-11-deacetylazithromycin (1:1). Azithromycin is derived from erythromycin; however, it differs chemically from erythromycin in that a methyl-substituted nitrogen atom is incorporated into the lactone ring. Its molecular formula is C_{38}H_{72}N_{2}O_{15}, and its molecular weight is 749.00. Azithromycin has the following structural formula:
Azithromycin, as the monohydrate, is a white to almost white crystalline powder with a molecular formula of C_{38}H_{72}N_{2}O_{12}·H_{2}O and a molecular weight of 767.00.

Azithromycin is supplied as tablets containing azithromycin monohydrate equivalent to either 250 mg or 500 mg azithromycin and the following inactive ingredients: croscarmellose sodium, dibasic calcium phosphate, hydroxypropyl methyl cellulose, lactose monohydrate, magnesium stearate, sodium lauryl sulfate, titanium dioxide, tricelain and D&C Red #30.

Organic Impurities Test Pending.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action
Azithromycin is a macrocyclic antibacterial drug. [see Microbiology (12.4)]

12.2 Pharmacodynamics
Based on animal models of infection, the antibacterial activity of azithromycin appears to correlate with the ratio of area under the concentration-time curve to minimum inhibitory concentration (AUC/MIC) for certain pathogens (S. pneumoniae and S. aureus). The principal pharmacodynamic parameter best associated with clinical and microbiological cure has not been elucidated in clinical trials with azithromycin.

Cardiac Electrophysiology
QTc interval prolongation was studied in a randomized, placebo-controlled parallel trial in 116 healthy subjects who received either chloroquine (1000 mg) alone or in combination with oral azithromycin (200 mg, 1000 mg, and 1500 mg once daily). Co-administration of azithromycin increased the QTc interval in a dose- and concentration-dependent manner. In comparison to chloroquine alone, the maximum mean (95% upper confidence bound) increases in QTc were 5 (10) ms, 7 (12) ms and 9 (14) ms with the co-administration of 500 mg, 1000 mg and 1500 mg azithromycin, respectively.

12.3 Pharmacokinetics
Following oral administration of a single 500 mg dose (two 250 mg tablets) to 36 fasted healthy male volunteers, the mean (SD) pharmacokinetic parameters were AUC_{0-120} = 4.3 (1.2) mcg·hr/mL; C_{max} = 0.5 (0.2) mcg/mL; T_{max} = 2.2 (0.9) hours. Two azithromycin 250 mg tablets are bioequivalent to a single 500 mg tablet.

In a two-way crossover study, 12 adult healthy volunteers (6 males, 6 females) received 1500 mg of azithromycin administered in single daily doses over either 5 days (two 250 mg tablets on day 1, followed by one 250 mg tablet on days 2 to 5) or 3 days (500 mg per day for 3 days). Due to limited serum samples on day 2 (5-day regimen) and days 2 to 4 (3-day regimen), the serum concentration-time profile of each subject was fit to a 3-compartment model and the AUC_{0-∞} for the fitted concentration profile was comparable between the 5-day and 3-day regimens.

<table>
<thead>
<tr>
<th>Pharmacokinetic Parameter [mean (SD)]</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max} (mcg/mL)</td>
<td>0.44 (0.22)</td>
<td>0.54 (0.25)</td>
<td>0.43 (0.20)</td>
<td>0.24 (0.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum AUC_{0-120} (mcg·hr/mL)</td>
<td>17.4 (6.7)*</td>
<td>14.9 (5.1)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum T_{max}</td>
<td>71.8 hr</td>
<td>68.9 hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC_{0-120}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Total AUC for the entire 3-day and 5-day regimens.

Absorption
The absolute bioavailability of azithromycin 250 mg capsules is 38%.

In a two-way crossover study in which 12 healthy subjects received a single 500 mg dose of azithromycin (two 250 mg tablets) with or without a high fat meal, food was shown to increase C_{max} by 28% but had no effect on AUC.

When azithromycin oral suspension was administered with food to 28 adult healthy male subjects, C_{max} increased by 56% and AUC was unchanged.

Distribution
The serum protein binding of azithromycin is variable in the concentration range approximating human exposure, decreasing from 51% at 0.02 mcg/mL to 7% at 2 mcg/mL.

The antibacterial activity of azithromycin is pH related and appears to be reduced with decreasing pH.

Azithromycin has been shown to penetrate into human tissues, including skin, lung, tonsil, and cervix. Extensive tissue distribution was confirmed by examination of additional tissues and fluids (bone, ejaculate, prostate, ovary, uterus, salpinx, stomach, liver, and gallbladder). As there are no data from adequate and well-controlled studies of azithromycin treatment of infections in these additional body sites, the clinical significance of these tissue concentration data is unknown.

Following a regimen of 500 mg on the first day and 250 mg daily for 4 days, very low concentrations were noted in cerebrospinal fluid (less than 0.01 mcg/mL) in the presence of noninflamed meninges.

Metabolism
In vitro and in vivo studies to assess the metabolism of azithromycin have not been performed.

Elimination
Plasma concentrations of azithromycin following single 500 mg oral and IV doses declined in a polyphasic pattern resulting in a mean apparent plasma clearance of 630 mL/min and terminal elimination half-life of 68 hours. The prolonged terminal half-life is thought to be due to extensive uptake and subsequent release of drug from tissues. Bilayer excision of azithromycin, predominantly as unchanged drug, is a major route of elimination. Over the course of a week, approximately 6% of the administered dose appears as unchanged drug in urine.

Specific Populations
Renal Insufficiency:
Azithromycin pharmacokinetics was investigated in 42 adults (21 to 85 years of age) with varying degrees of renal impairment. Following the oral administration of a single 1.0 g dose of azithromycin (4 x 250 mg capsules), mean C_{max} and AUC_{0-120} increased by 5.1% and 4.2%, respectively, in subjects with mild to moderate renal impairment (GFR 30 to 80 mL/min) compared to subjects with normal renal function (GFR >80 mL/min). The mean C_{max} and AUC_{0-120} increased 61% and 35%, respectively, in subjects with severe renal impairment (GFR <10 mL/min) compared to subjects with normal renal function (GFR >80 mL/min).
Pharmacodynamics

The pharmacokinetics of azithromycin in subjects with hepatic impairment has not been established.

Gender:

There are no significant differences in the disposition of azithromycin between male and female subjects. No dosage adjustment is recommended based on gender.

Geriatric Patients:

Pharmacokinetic parameters in older volunteers (65 to 85 years old) were similar to those in young adults (18 to 40 years old) for the 5-day therapeutic regimen. Dosage adjustment does not appear to be necessary for older patients with normal renal and hepatic function receiving treatment with this dosage regimen. (see Geriatric Use [8.3].)

Pediatric Patients:

In vitro, azithromycin has been shown to be active against most isolates of the following microorganisms, both inhibiting bacterial protein synthesis and impeding the assembly of the 50S ribosomal subunit.

Mechanism of Action

Azithromycin is a macrolide antibiotic that inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of susceptible microorganisms, thereby blocking translation of messenger RNA and preventing the assembly of the 50S ribosomal subunit.

Resistance

Azithromycin demonstrates cross resistance with erythromycin. The most frequently encountered mechanism of resistance to azithromycin is modification of the 23S rRNA target, most often by methylation. Ribosomal modifications can determine cross resistance to other macrolides, lincosamides, and streptogramin B (MLSB phenotype).

Antimicrobial Activity

Azithromycin has been shown to be active against most isolates of the following microorganisms, both in vitro and in clinical infections. (see INDICATIONS AND USAGE [11].)

Single dose pharmacokinetics of azithromycin in pediatric patients

Single dose pharmacokinetics of azithromycin in pediatric patients given doses of 30 mg/kg have not been studied. (see DOSAGE AND ADMINISTRATION [2].)

Drug interaction studies

Drug interaction studies were performed with azithromycin and other drugs likely to be co-administered. The effects of co-administration of azithromycin on the pharmacokinetics of other drugs are shown in Table 1 and the effects of other drugs on the pharmacokinetics of azithromycin are shown in Table 2.

Co-administration of azithromycin at therapeutic doses had a modest effect on the pharmacokinetics of the drugs listed in Table 1. No dosage adjustment of drugs listed in Table 1 is recommended when co-administered with azithromycin.

Co-administration of azithromycin with efavirenz or fluconazole had a modest effect on the pharmacokinetics of azithromycin. Nelfinavir significantly increased the Cmax and AUC of azithromycin. No dosage adjustment of azithromycin is recommended when administered with drugs listed in Table 2. (see DRUG INTERACTIONS [7,3]).

Pharmacokinetic Parameter

[mean (SD)]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>5-Day Regimen (12 mg/kg for 5 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmax (mcg/mL)</td>
<td>0.5 (0.4)</td>
</tr>
<tr>
<td>Tmax (hr)</td>
<td>2.2 (0.8)</td>
</tr>
<tr>
<td>AUC (mg·hr/mL)</td>
<td>3.9 (1.9)</td>
</tr>
</tbody>
</table>

Table 1. Drug Interactions: Pharmacokinetic Parameters for Co-administered Drugs in the Presence of Azithromycin

<table>
<thead>
<tr>
<th>Co-administered Drug</th>
<th>Dose of Co-administered Drug</th>
<th>Dose of Azithromycin</th>
<th>Ratio (without/with co-administered drug) of Azithromycin Pharmacokinetic Parameters (90% CI); No Effect = 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin</td>
<td>10 mg/day for 8 days</td>
<td>500 mg orally on days 6 to 8</td>
<td>12 (0.63 to 1.08) (0.81 to 1.25)</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>200 mg/day for 2 days, then 200 mg twice a day for 18 days</td>
<td>500 mg orally for days 16 to 18</td>
<td>7 (0.88 to 1.06) (0.88 to 1.06)</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>20 mg/day for 11 days</td>
<td>500 mg orally on days 7, then 250 mg orally on days 8 to 11</td>
<td>14 (0.93 to 1.14) (0.92 to 1.13)</td>
</tr>
<tr>
<td>Didanosine</td>
<td>200 mg orally twice a day for 21 days</td>
<td>1200 mg orally on days 8 to 21</td>
<td>6 (0.83 to 2.43) (0.83 to 1.57)</td>
</tr>
<tr>
<td>Elavirazin</td>
<td>400 mg/day for 7 days</td>
<td>600 mg orally on day 7</td>
<td>14 (0.98 to 1.11) (0.97 to 1.05)</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>200 mg orally single dose</td>
<td>1200 mg orally single dose</td>
<td>18 (0.89 to 1.81) (0.97 to 1.05)</td>
</tr>
<tr>
<td>Indinavir</td>
<td>800 mg three times a day for 5 days</td>
<td>1200 mg orally on day 5</td>
<td>18 (0.86 to 1.00) (0.86 to 1.00)</td>
</tr>
<tr>
<td>Midazolam</td>
<td>15 mg orally on day 3</td>
<td>500 mg orally on day 3</td>
<td>12 (0.89 to 1.81) (1.01 to 1.56)</td>
</tr>
<tr>
<td>Nelfinavir</td>
<td>750 mg three times a day for 11 days</td>
<td>1,200 mg orally on day 9</td>
<td>14 (0.81 to 1.01) (0.78 to 0.93)</td>
</tr>
<tr>
<td>Sildenafil</td>
<td>100 mg on days 1 and 4</td>
<td>500 mg orally on day 3</td>
<td>12 (0.84 to 1.57) (0.75 to 1.12)</td>
</tr>
<tr>
<td>Theophylline</td>
<td>4 mg/kg IV on days 1, 11, 25</td>
<td>500 mg orally on days 7, 250 mg orally on days 8 to 11</td>
<td>10 (1.02 to 1.40) (0.86 to 1.22)</td>
</tr>
<tr>
<td>Theophylline</td>
<td>300 mg orally twice a day for 15 days</td>
<td>500 mg orally on day 6, then 250 mg orally on days 7 to 10</td>
<td>8 (0.92 to 1.29) (0.89 to 1.31)</td>
</tr>
<tr>
<td>Triamcinol</td>
<td>0.125 mg on day 2</td>
<td>500 mg orally on day 2</td>
<td>2 (1.06 to 1.25) (1.02 to 1.08)</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>160 mg/800 mg orally on day 7</td>
<td>1200 mg orally on day 7</td>
<td>12 (0.75 to 0.97) (0.78 to 1.03)</td>
</tr>
<tr>
<td>Zidovudine</td>
<td>500 mg orally on day 21</td>
<td>600 mg orally on day 5</td>
<td>4 (0.42 to 1.02) (0.52 to 1.70)</td>
</tr>
<tr>
<td>Zidovudine</td>
<td>500 mg orally on day 21</td>
<td>1200 mg orally on day 4</td>
<td>4 (0.43 to 1.97) (0.69 to 2.43)</td>
</tr>
</tbody>
</table>

Table 2. Drug Interactions: Pharmacokinetic Parameters for Co-administered Drugs. [see DRUG INTERACTIONS [7]]

<table>
<thead>
<tr>
<th>Co-administered Drug</th>
<th>Dose of Co-administered Drug</th>
<th>Dose of Azithromycin</th>
<th>Ratio (without/with co-administered drug) of Azithromycin Pharmacokinetic Parameters (90% CI); No Effect = 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efavirenz</td>
<td>400 mg/day for 7 days</td>
<td>600 mg orally on day 7</td>
<td>14 (1.04 to 1.42) (0.92*</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>200 mg orally single dose</td>
<td>3,200 mg orally single dose</td>
<td>18 (0.85 to 1.02) (1.07*</td>
</tr>
<tr>
<td>Nelfinavir</td>
<td>750 mg three times a day for 11 days</td>
<td>1,200 mg orally on day 9</td>
<td>14 (1.77 to 3.15) (2.12</td>
</tr>
</tbody>
</table>

12.4 Microbiology

Mechanism of Action

Azithromycin acts by binding to the 23S rRNA of the 50S ribosomal subunit of susceptible microorganisms, inhibiting bacterial protein synthesis and impeding the assembly of the 50S ribosomal subunit.

Resistance

Azithromycin demonstrates cross resistance with erythromycin. The most frequently encountered mechanism of resistance to azithromycin is modification of the 23S rRNA target, most often by methylation. Ribosomal modifications can determine cross resistance to other macrolides, lincosamides, and streptogramin B (MLSB phenotype).

Antimicrobial Activity

Azithromycin has been shown to be active against most isolates of the following microorganisms, both in vitro and in clinical infections. (see INDICATIONS AND USAGE [11].)
In a randomized, double-blind controlled clinical trial of acute exacerbation of chronic bronchitis (AECB), azithromycin (500 mg once daily for 3 days) was compared with clarithromycin (500 mg twice daily for 10 days). The primary endpoint of this trial was the clinical cure rate at Days 21 to 24. For the 304 patients analyzed in the modified intent-to-treat analysis at the Days 21 to 24 visit, the clinical cure rate for 3 days of azithromycin was 85% (129/157) compared to 82% (129/157) for 10 days of clarithromycin. Phospholipidosis was also observed in neonatal rats dosed for 18 days at 30 mg/kg/day, which is less than the pediatric dose of 60 mg/kg based on the pediatric dose C\text{max} of 0.821 mcg/mL at the adult dose of 2 g). Phospholipidosis has been observed in some tissues of mice, rats, and dogs given multiple doses of azithromycin. It has been demonstrated in numerous organ systems (e.g., eye, dural root ganglia, liver, gallbladder, kidney, spleen, and/or pancreas) in dogs and rats treated with azithromycin at doses which, expressed on the basis of body surface area, are similar to or less than the highest recommended adult human dose. This effect has been shown to be reversible after cessation of azithromycin treatment. Based on the pharmacokinetic data, phospholipidosis has been seen in the rat (50 mg/kg/day dose) at the observed maximal plasma concentration of 1.3 mcg/mL (1.6 times the observed C\text{max} of 0.821 mcg/mL at the adult dose of 2 g). Subsequently, it has been shown in the dog (10 mg/kg/day dose) at the observed maximal serum concentration of 1 mcg/mL (1.2 times the observed C\text{max} of 0.821 mcg/mL at the adult dose of 2 g). Phospholipidosis was also observed in neonatal rats dosed for 10 days at 30 mg/kg/day, which is less than the pediatric dose of 60 mg/kg based on the body surface area. It was not observed in neonatal rats treated for 10 days at 40 mg/kg/day with mean serum concentrations of 1.86 mcg/mL, approximately 1.5 times the C\text{max} of 1.27 mcg/mL at the pediatric dose. Phospholipidosis has been observed in neonatal dogs (10 mg/kg/day) at maximum mean whole blood concentrations of 3.54 mcg/mL, approximately 3 times the pediatric dose C\text{max}. The significance of these findings for animals and for humans is unknown.

14.1 Adult Patients

Acute Bacterial Exacerbations of Chronic Bronchitis

In a randomized, double-blind controlled clinical trial of acute exacerbation of chronic bronchitis (AECB), azithromycin (500 mg once daily for 3 days) was compared with clarithromycin (500 mg twice daily for 10 days). The primary endpoint of this trial was the clinical cure rate at Days 21 to 24. For the 304 patients analyzed in the modified intent-to-treat analysis at the Days 21 to 24 visit, the clinical cure rate for 3 days of azithromycin was 85% (129/157) compared to 82% (129/157) for 10 days of clarithromycin.

The following outcomes were the clinical cure rates at the Days 21 to 24 visit for the bacteriologically evaluable patients by pathogen:

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Azithromycin (3 Days)</th>
<th>Clarithromycin (10 Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pneumonia</td>
<td>29/32 (91%)</td>
<td>21/27 (78%)</td>
</tr>
<tr>
<td>H. influenza</td>
<td>12/14 (86%)</td>
<td>14/16 (88%)</td>
</tr>
<tr>
<td>M. catarrhalis</td>
<td>11/12 (92%)</td>
<td>12/15 (80%)</td>
</tr>
</tbody>
</table>

Acute Bacterial Sinusitis

In a randomized, double-blind, double-dummy controlled clinical trial of acute bacterial sinusitis, azithromycin (500 mg once daily for 3 days) was compared with amoxicillin/clavulanate (500/125 mg three times a day for 10 days). Clinical response assessments were made at Day 10 and Day 28. The primary endpoint of this trial was prospectively defined as the clinical cure rate at Day 28. For the 594 patients analyzed in the modified intent to treat analysis at the Day 10 visit, the clinical cure rate for 3 days of azithromycin was 88% (268/304) compared to 85% (248/281) for 10 days of amoxicillin/clavulanate. For the 586 patients analyzed in the modified intent to treat analysis at the Day 28 visit, the clinical cure rate for 3 days of azithromycin was 88% (268/303) compared to 85% (248/291) for 10 days of amoxicillin/clavulanate.

Clinical Success Rates of Azithromycin (500 mg per day for 3 Days)

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Day 7</th>
<th>Day 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pneumonia</td>
<td>23/26 (88%)</td>
<td>21/25 (84%)</td>
</tr>
<tr>
<td>H. influenza</td>
<td>28/32 (87%)</td>
<td>24/32 (75%)</td>
</tr>
<tr>
<td>M. catarrhalis</td>
<td>14/15 (93%)</td>
<td>13/15 (87%)</td>
</tr>
</tbody>
</table>

Susceptibility Testing Methods

For specific information regarding susceptibility test interpretive criteria and associated test methods and quality control standards recognized by FDA for this drug, please see: https://www.fda.gov/STIC.
14.2 Pediatric Patients

From the perspective of evaluating pediatric clinical trials, Days 11 to 14 were considered on-therapy evaluations because of the extended half-life of azithromycin. Days 11 to 14 data are provided for clinical guidance. Days 24 to 32 evaluations were considered the primary test of cure endpoint.

Pharyngitis/Tonsillitis

In three double-blind controlled studies, conducted in the United States, azithromycin (12 mg/kg once a day for 5 days) was compared to amoxicillin/clavulanate potassium (1:4) in the treatment of pharyngitis due to group A (β-hemolytic streptococci [GABHS] or S. pyogenes). Azithromycin was clinically and microbiologically statistically superior to amoxicillin at Day 14 and Day 30 with the following clinical success (i.e., cure and improvement) and bacteriologic efficacy rates (for the combined evaluable patient with documented GABHS):

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Overall</th>
<th>Clinical Success</th>
<th>Bacteriologic Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azithromycin</td>
<td>521 patients</td>
<td>85% (cure)</td>
<td>88% (eradication)</td>
</tr>
<tr>
<td>Penicillin V</td>
<td>553 patients</td>
<td>82% (cure)</td>
<td>88% (eradication)</td>
</tr>
</tbody>
</table>

Approximately 1% of azithromycin-susceptible S. pyogenes isolates were resistant to azithromycin following therapy.

Acute Otitis Media

Efficacy using azithromycin given over 5 days (10 mg/kg on Day 1 followed by 5 mg/kg on Days 2 to 5):

Trial 1

In a double-blind, controlled clinical study of acute otitis media performed in the United States, azithromycin (10 mg/kg on Day 1 followed by 5 mg/kg on Days 2 to 5) was compared to amoxicillin/clavulanate potassium (1:4). For the 553 patients who were evaluated for clinical efficacy, the clinical success rate (i.e., cure plus improvement) at the Day 11 visit was 88% for azithromycin and 88% for the control agent. For the 521 patients who were evaluated at the Day 30 visit, the clinical success rate was 73% for azithromycin and 71% for the control agent.

Trial 2

In a non-comparative clinical and microbiologic trial performed in the United States, where significant rates of beta-lactamase producing organisms (35%) were found, 131 patients were evaluable for clinical and microbiologic efficacy. The combined clinical success rate (i.e., cure and improvement) at the Day 11 visit was 84% for azithromycin. For the 122 patients who were evaluated at the Day 30 visit, the clinical success rate was 78% for azithromycin.

Microbiologic determinations were made at the pre-treatment visit. Microbiology was not reassessed at later visits. The following clinical success rates were obtained from the evaluable group:

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Overall</th>
<th>Clinical Success</th>
<th>Bacteriologic Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azithromycin</td>
<td>122 patients</td>
<td>82% (cure)</td>
<td>88% (eradication)</td>
</tr>
<tr>
<td>Penicillin V</td>
<td>301 patients</td>
<td>80% (cure)</td>
<td>88% (eradication)</td>
</tr>
</tbody>
</table>

Microbiologic determinations were made at the pre-treatment visit. Microbiology was not reassessed at later visits. At the Day 11 and Day 30 visits, the following clinical success rates were obtained from the evaluable group:

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Overall</th>
<th>Clinical Success</th>
<th>Bacteriologic Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azithromycin</td>
<td>301 patients</td>
<td>84% (cure)</td>
<td>88% (eradication)</td>
</tr>
<tr>
<td>Penicillin V</td>
<td>301 patients</td>
<td>80% (cure)</td>
<td>88% (eradication)</td>
</tr>
</tbody>
</table>

Efficacy using azithromycin given over 3 days (10 mg/kg/day):

Trial 4

In a double-blind, randomized, controlled clinical study of acute otitis media in pediatric patients from 6 months to 12 years of age, azithromycin (10 mg/kg per day for 3 days) was compared to amoxicillin/clavulanate potassium (1:4). This study utilized two of the same investigators as Protocol 2 (above) and these two investigators enrolled 90% of the patients in Protocol 3. For this reason, Protocol 3 was not considered to be an independent study. Significant rates of beta-lactamase producing organisms (20%) were found. Ninety-two (92) patients were evaluable for clinical and microbiologic efficacy. The combined clinical success rate (i.e., cure and improvement) of these patients with a baseline pathogen at the Day 11 visit was 88% for azithromycin vs. 100% for control; at the Day 30 visit, the clinical success rate was 82% for azithromycin vs. 88% for control.

Microbiologic determinations were made at the pre-treatment visit. Microbiology was not reassessed at later visits. At the Day 11 and Day 30 visits, the following clinical success rates were obtained from the evaluable group:

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Overall</th>
<th>Clinical Success</th>
<th>Bacteriologic Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azithromycin</td>
<td>92 patients</td>
<td>88% (cure)</td>
<td>88% (eradication)</td>
</tr>
<tr>
<td>Penicillin V</td>
<td>98 patients</td>
<td>95% (cure)</td>
<td>88% (eradication)</td>
</tr>
</tbody>
</table>

Efficacy using azithromycin given as a single dose:

Trial 5

A double-blind, controlled, randomized trial was performed at nine clinical centers. Pediatric patients from 6 months to 12 years of age were randomized 1:1 to treatment with either azithromycin given at 30 mg/kg as a single dose on Day 1 or amoxicillin/clavulanate potassium (1:4), divided q12h for 10 days. Each patient received active drug and placebo matched for the comparator.

For the 365 patients who were evaluated for clinical efficacy at the Day 12 visit, the clinical success rate (i.e., cure plus improvement) was 83% for azithromycin and 88% for the control agent. For the 362 patients who were evaluated at the Days 24 to 28 visit, the clinical success rate was 74% for azithromycin and 69% for the control agent.

Efficacy using azithromycin 30 mg/kg given as a single dose:

Trial 6

In a double-blind, controlled, randomized trial, 248 patients from 6 months to 12 years of age with documented acute otitis media were dosed with a single oral dose of azithromycin (30 mg/kg on Day 1).

For the 248 patients who were evaluated for clinical efficacy at the Day 12 visit, the clinical success rate (i.e., cure plus improvement) was 89% and for the 242 patients evaluable at Days 24 to 28, the clinical success rate (cure) was 85%.

Presumed Bacteriologic Eradication

- **S. pneumoniae**
 - Day 11: 83/87 (96%) vs. 67/76 (88%)
 - Day 30: 86/93 (93%) vs. 92/103 (89%)

- **H. influenzae**
 - Day 11: 41/63 (65%) vs. 28/49 (57%)
 - Day 30: 55/66 (83%) vs. 56/78 (72%)

- **M. catarrhalis**
 - Day 11: 24/41 (59%) vs. 18/36 (50%)
 - Day 30: 34/46 (74%) vs. 32/50 (64%)

- **E. pneumonae**
 - Day 11: 6/11 (55%) vs. 9/17 (53%)
 - Day 30: 20/30 (67%) vs. 24/36 (67%)

- **Overall**
 - Day 11: 117/181 (64%) vs. 105/179 (59%)
 - Day 30: 177/265 (66%) vs. 171/260 (65%)
| S. pneumoniae | 70/76 (92%) | 67/76 (88%) |
| H. influenzae | 30/42 (71%) | 28/44 (64%) |
| M. catarrhalis | 10/10 (100%) | 10/10 (100%) |
| Overall | 110/128 (86%) | 105/130 (81%) |

16 HOW SUPPLIED/STORAGE AND HANDLING
Azithromycin tablets USP is supplied in the following strengths and package configurations:

Azithromycin tablets USP, 250 mg are supplied as pink, oval shaped film-coated tablets, engraved with “LU” on one side and “L11” on the other side containing azithromycin monohydrate USP equivalent to 250 mg of azithromycin USP.

These are packaged in bottles and blister cards as follows:

| Bottles of 30 Tablets | NDC 68180-160-06 |
| Carton of 3 Blister Cards (6 Tablets per Blister Card) | NDC 68180-160-13 |

Azithromycin tablets USP, 500 mg are supplied as pink, oval shaped film-coated tablets, engraved with “LU” on one side and “L12” on the other side containing azithromycin monohydrate USP equivalent to 500 mg of azithromycin USP.

These are packaged in bottles and blister cards as follows:

| Bottles of 30 Tablets | NDC 68180-161-06 |
| Carton of 3 Blister Cards (3 Tablets per Blister Card) | NDC 68180-161-13 |

Store at 25°C (77°F); excursions permitted to 15° to 30°C (59° to 86°F) [See USP Controlled Room Temperature].

17 PATIENT COUNSELING INFORMATION
General Patient Counseling
Azithromycin tablets can be taken with or without food.

Patients should also be cautioned not to take aluminum- and magnesium-containing antacids and azithromycin simultaneously.

The patient should be directed to discontinue azithromycin immediately and contact a physician if any signs of an allergic reaction occur.

Direct parents or caregivers to contact their physician if vomiting and irritability with feeding occurs in the infant.

Patients should be counseled that antibacterial drugs including azithromycin should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When azithromycin is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of the therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by azithromycin or other antibacterial drugs in the future.

Diarrhea is a common problem caused by antibacterials which usually ends when the antibacterial is discontinued. Sometimes after starting treatment with antibacterials patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibacterial drug. If this occurs, patients should contact their physician as soon as possible.

See FDA-approved Patient Labeling

Manufactured for:
Lupin Pharmaceuticals, Inc.
Baltimore, Maryland 21202
United States

Manufactured by:
Lupin Limited
Gua - 403722
India

Revised: August 2018 ID#: 255553

Patient Information
Azithromycin (ay-ZITH-roe-MYE-sin) Tablets USP

Read this Patient Information leaflet before you start taking azithromycin tablets and each time you get a refill. There may be new information. This information does not take the place of talking to your healthcare provider about your medical condition or your treatment.

What is azithromycin tablets?

Azithromycin tablets are a macrolide antibiotic prescription medicine used in adults 18 years or older to treat certain infections caused by certain germs called bacteria. These bacterial infections include:

- acute worsening of chronic bronchitis
- acute sinus infection
- community-acquired pneumonia
- infected throat or tonsils
- skin infections
- infections of the urethra or cervix
- genital ulcers in men

Azithromycin tablets are also used in children to treat:

- ear infections
- community-acquired pneumonia
- infected throat or tonsils

Azithromycin should not be taken by people who cannot tolerate oral medications because they are very ill or have certain other risk factors including:

- have cystic fibrosis
- have hospital acquired infection
- have known or suspected bacteria in the blood
- need to be in the hospital
- are elderly
- have any medical problems that can lower the ability of the immune system to fight infections

Azithromycin tablets are not for viral infections such as the common cold.

It is not known if azithromycin tablets are safe and effective for genital ulcers in women.
It is not known if azithromycin tablets are safe and effective for children with ear infections, sinus infections, and community-acquired pneumonia under 6 months of age.

It is not known if azithromycin tablets are safe and effective for infected throat or tonsils in children under 2 years of age.

Who should not take azithromycin tablets?

Do not take azithromycin tablets if you:
- have had a severe allergic reaction to certain antibiotics known as macrolides or ketolides including azithromycin and erythromycin
- have a history of cholestatic jaundice or hepatic dysfunction that happened with the use of azithromycin

What should I tell my healthcare provider before taking azithromycin tablets?

Before you take azithromycin tablets, tell your healthcare provider if you:
- have pneumonia
- have cystic fibrosis
- have known or suspected bacteremia (bacterial infection in the blood)
- have liver or kidney problems
- have an irregular heartbeat, especially a problem called "QT prolongation"
- have a problem that causes muscle weakness (myasthenia gravis)
- have any other medical problems
- are pregnant or plan to become pregnant. It is not known if azithromycin tablets will harm your unborn baby.
- are breastfeeding or plan to breastfeed. Azithromycin has been reported to pass into breast milk.

Tell your healthcare provider about all the medicines you take, including prescription and non-prescription medicines, vitamin, and herbal supplements.

Azithromycin tablets and other medicines may affect each other causing side effects. Azithromycin tablets may affect the way other medicines work, and other medicines may affect how azithromycin tablets work.

Especially tell your healthcare provider if you take:
- self-inject
- a blood thinner (warfarin)
- digoxin
- phenytoin
- an antacid that contains aluminum or magnesium

Know the medicines you take. Keep a list of your medicines and show it to your healthcare provider and pharmacist when you get a new medicine.

How should I take azithromycin tablets?

Take azithromycin tablets exactly as your healthcare provider tells you to take it.

Azithromycin tablets can be taken with or without food.

Do not skip any doses of azithromycin tablets or stop taking it, even if you begin to feel better, until you finish your prescribed treatment unless you have a serious allergic reaction or your healthcare provider tells you to stop taking azithromycin tablets. "See What are the possible side effects of azithromycin tablets?" If you skip doses, or do not complete the total course of azithromycin tablets your treatment may not work as well and your infection may be harder to treat. Take all of your azithromycin tablets doses will help lower the chance that the bacteria will become resistant to azithromycin tablets.

If the bacteria becomes resistant to azithromycin, azithromycin tablets and other antibiotic medicines may not work for you in the future.

If you take too much azithromycin tablets, call your healthcare provider or get medical help right away.

What are the possible side effects of azithromycin tablets?

Azithromycin tablets can cause serious side effects, including:
- **Serious allergic reactions.** Allergic reactions can happen in people taking azithromycin tablets the active ingredient in azithromycin tablets, even after only 1 dose. Stop taking azithromycin tablets and get emergency medical help right away if you have any of the following symptoms of a severe allergic reaction:
 - trouble breathing or swelling
 - swelling of the lips, tongue, face
 - throat tightness, hoarseness
 - rapid heartbeat
 - fairness
 - skin rash (hives)
 - new onset of fever and swollen lymph nodes

If you skip doses, or do not complete the total course of azithromycin tablets your treatment may not work as well and your infection may be harder to treat. Take all of your azithromycin tablets doses will help lower the chance that the bacteria will become resistant to azithromycin tablets.

Skin rash may be a sign of a more serious reaction to azithromycin tablets.

- **Liver damage (hepatotoxicity).** Hepatotoxicity can happen in people who take azithromycin tablets. Call your healthcare provider right away if you have unexplained symptoms such as:
 - nausea or vomiting
 - stomach pain
 - fever
 - weakness
 - abdominal pain or tenderness
 - itching
 - unusual tiredness
 - loss of appetite
 - change in the color of your bowel movements
 - dark colored urine
 - yellowing of your skin or of the whites of your eyes

Stop taking azithromycin tablets and tell your healthcare provider right away if you have yellowing of your skin or white part of your eyes, or if you have dark urine. These can be signs of a serious reaction to azithromycin tablets (a liver problem).

- **Serious heart rhythm changes (QT prolongation and torsades de pointes).**
 Tell your healthcare provider right away if you have a change in your heartbeat (a fast or irregular heartbeat), or if you feel faint and dizzy. Azithromycin tablets can cause a rare heart problem known as prolongation of the QT interval. This condition can cause an abnormal heartbeat and can be very dangerous. The chances of this happening are higher in people:
 - who are elderly
 - with a family history of prolonged QT interval
 - with low blood potassium
 - who take certain medicines to control heart rhythm (antiarrhythmics)

- **Worsening of myasthenia gravis (a problem that causes muscle weakness).**

Certain antibiotics like azithromycin tablets may cause worsening of myasthenia gravis symptoms,
including muscle weakness and breathing problems. Call your healthcare provider right away if you have any worsening muscle weakness or breathing problem.

- Diarrhea. Tell your healthcare provider right away if you have watery diarrhea, diarrhea that does not go away, or bloody stools. You may experience cramping and a fever. This could happen after you have finished your azithromycin tablets.

The most common side effects of azithromycin tablets include:

- nausea
- stomach pain
- vomiting

These are not all the possible side effects of azithromycin tablets. Tell your healthcare provider about any side effect that bothers you or that does not go away.

Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

How should I store azithromycin tablets?

- Store azithromycin tablets at 15° to 30°C (59° to 86°F).
- Safely throw away any medicine that is out of date or no longer needed.

Keep azithromycin tablets and all medicines out of the reach of children.

General information about the safe and effective use of azithromycin tablets.

Medicines are sometimes prescribed for purposes other than those listed in the Patient Information leaflet. Do not use azithromycin tablets for a condition for which it was not prescribed. Do not give azithromycin tablets to other people, even if they have the same symptoms you have. It may harm them.

This Patient Information leaflet summarizes the most important information about azithromycin tablets. If you would like more information, talk with your healthcare provider. You can ask your pharmacist or healthcare provider for information about azithromycin tablets that is written for health professionals.

For more information, go to www.lupinpharmaceuticals.com or call 1-800-399-2561

What are the ingredients in azithromycin tablets?

Azithromycin Tablets:

Active ingredient: azithromycin monohydrate

Inactive ingredients: croscarmellose sodium, dibasic calcium phosphate, hydroxypropyl methylcellulose, lactose monohydrate, magnesium stearate, sodium lauryl sulfate, titanium dioxide, triacetin and D & C Red #30.

How to open the blister:

<table>
<thead>
<tr>
<th>Azithromycin tablets, 250 mg</th>
<th>Azithromycin tablets, 500 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tear along the perforation to separate</td>
<td>1. Tear along the perforation to separate</td>
</tr>
<tr>
<td>2. Peel the paper from above to expose foil</td>
<td>2. Peel the paper from above to expose foil</td>
</tr>
<tr>
<td>3. Push tablet through foil</td>
<td>3. Push tablet through foil</td>
</tr>
</tbody>
</table>

This Patient Information has been approved by the U.S. Food and Drug Administration.

Manufactured for:

Lupin Pharmaceuticals, Inc.
Baltimore, Maryland 21202
United States

Manufactured by:

Lupin Limited
Goa - 403722
India

Revised: August 2018

ID#: 255557

PACKAGE LABEL:PRINCIPAL DISPLAY PANEL

Azithromycin Tablets USP, 250 mg
Container Label-30 Tablets
NDC 68180-160-06
Azithromycin Tablets USP, 500 mg
3 Card x 3 Tablets- Outer Carton Label
NDC 68180-161-13

Azithromycin Tablets USP, 500 mg
3 Tablets- Blister Card
NDC 68180-161-11
AZITHROMYCIN MONOHYDRATE
azithromycin monohydrate tablets

Product Information

<table>
<thead>
<tr>
<th>Product Type</th>
<th>HUMAN PRESCRIPTION DRUG</th>
<th>Item Code (Source)</th>
<th>NDC:68180-160-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route of Administration</td>
<td></td>
<td>ORAL</td>
<td></td>
</tr>
</tbody>
</table>

Active Ingredient/Active Moiety

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>Basis of Strength</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZITHROMYCIN MONOHYDRATE (UNII: JTE4MNN1MD)</td>
<td>AZITHROMYCIN ANHYDROUS (UNII: J2KLZ20U1M)</td>
<td>250 mg</td>
</tr>
</tbody>
</table>

Inactive Ingredients

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALCIUM PHOSPHATE, DIBASIC, ANHYDROUS (UNII: L11K75P92J)</td>
<td></td>
</tr>
<tr>
<td>CROSCARMELLOSE SODIUM (UNII: M28OL1HH48)</td>
<td></td>
</tr>
<tr>
<td>D&C RED NO. 30 (UNII: 2S42T2808B)</td>
<td></td>
</tr>
<tr>
<td>HYPROMELLOSE 2910 (15 MPA.S) (UNII: 36SFW2JZ0W)</td>
<td></td>
</tr>
<tr>
<td>LACTOSE MONOHYDRATE (UNII: EWQ57Q8I5X)</td>
<td></td>
</tr>
<tr>
<td>MAGNESIUM STEARATE (UNII: 70097M6I30)</td>
<td></td>
</tr>
<tr>
<td>SODIUM LAURYL SULFATE (UNII: 368GB5141J)</td>
<td></td>
</tr>
<tr>
<td>TITANIUM DIOXIDE (UNII: 15FIX9V2JP)</td>
<td></td>
</tr>
<tr>
<td>TRIACETIN (UNII: XHX3C3X673)</td>
<td></td>
</tr>
</tbody>
</table>

Product Characteristics

<table>
<thead>
<tr>
<th>Color</th>
<th>Pink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape</td>
<td>Oval</td>
</tr>
<tr>
<td>Size</td>
<td>14mm</td>
</tr>
<tr>
<td>Score</td>
<td>No Scale</td>
</tr>
<tr>
<td>Imprint Code</td>
<td>LU;L11</td>
</tr>
</tbody>
</table>

Packaging

<table>
<thead>
<tr>
<th>#</th>
<th>Item Code</th>
<th>Package Description</th>
<th>Marketing Start Date</th>
<th>Marketing End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NDC:68180-160-13</td>
<td>36 in 1 CARTON</td>
<td>08/18/2015</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NDC:68180-160-06</td>
<td>30 in 1 CONTAINER; Type: Non a Combination Product</td>
<td>08/18/2015</td>
<td></td>
</tr>
</tbody>
</table>

Marketing Information

<table>
<thead>
<tr>
<th>Marketing Category</th>
<th>Application Number or Monograph Citation</th>
<th>Marketing Start Date</th>
<th>Marketing End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANDA</td>
<td>ANDA065398</td>
<td>08/18/2015</td>
<td></td>
</tr>
</tbody>
</table>
AZITHROMYCIN MONOHYDRATE
azithromycin monohydrate tablet

Product Information
Product Type: HUMAN PRESCRIPTION DRUG
Ingredient: NDC:68180-161
Route of Administration: ORAL

Active Ingredient/Active Moiety
Ingredient Name	Basis of Strength	Strength
AZITHROMYCIN MONOHYDRATE (UNII: JTE4MNN1MD) | AZITHROMYCIN ANHYDROUS (UNII: J2KLZ20U1M) | 500 mg

Inactive Ingredients
Ingredient Name	Strength
CALCIUM PHOSPHATE, DIBASIC, ANHYDROUS (UNII: L11K75P92J) |
CROSCARMELLOSE SODIUM (UNII: M28OL1HH48) |
HYFORMELLOSE 2910 (15 MPA.S) (UNII: 36SFW2JZ0W) |
LACTOSE MONOHYDRATE (UNII: E8960G0010) |
MAGNESIUM STEARATE (UNII: 70097M6I30) |
TRIACETIN (UNII: XHX3C3X673) |

Product Characteristics
Color: PINK
Shape: OVAL
Size: 17mm
Flavor: Imprint Code: LU;L12

Packaging
# Item Code	Package Description	Marketing Start Date	Marketing End Date
1 NDC:68180-161-13 | 1 in 1 CARTON | 08/18/2015 |
1 NDC:68180-161-06 | 30 in 1 CONTAINER; Type II: Not a Combination Product | 08/18/2015 |

Marketing Information
Marketing Category: ANDA
Application Number or Monograph Citation: ANDA065399
Marketing Start Date: 08/18/2015
Marketing End Date: 08/18/2015

Labeler
Lupin Pharmaceuticals, Inc. (089153071)
Registrant
LUPIN LIMITED (675923163)

Establishment
Name: LUPIN LIMITED
Address: 677600414
Business Operations: MANUFACTURE(68180-160, 68180-161), PACK(68180-160, 68180-161)

Revised: 8/2018
Lupin Pharmaceuticals, Inc.